

bookstore

Release v2.2.1 (What’s new?).

bookstore provides tooling and workflow recommendations for storing, scheduling, and publishing notebooks.

Table of Contents

	Installation
	Install from PyPI (recommended)

	Install from Source

	Configuration
	Example configuration

	Usage
	How to store and clone versions

	How to publish a notebook

	REST API

	Reference
	Configuration

	Archiving

	bookstore.handlers module

	bookstore.s3_paths module

	Clone

	Notebook Client

	Bookstore Client

	Project
	Contributing

	Contributor Code of Conduct

	Local Continuous Integration

	Running Python Tests

	Releasing

	Change Log
	2.3.0 Unreleased

	Releases prior to 2.3.0

Indices and tables

	Index

	Module Index

	Search Page

Installation

bookstore may be installed using Python 3.6 and above.

After installation, bookstore can process Python 2 or Python 3 notebooks.

Install from PyPI (recommended)

python3 -m pip install bookstore

Install from Source

	Clone this repo:

git clone https://github.com/nteract/bookstore.git

	Change directory to repo root:

cd bookstore

	Install dependencies:

python3 -m pip install -r requirements.txt
python3 -m pip install -r requirements-dev.txt

	Install package from source:

python3 -m pip install .

Tip

Don’t forget the dot at the end of the command

Configuration

Commonly used configuration settings can be stored in BookstoreSettings in the
jupyter_notebook_config.py file. These settings include:

	workspace location

	published storage location

	S3 bucket information

	AWS credentials for S3

Example configuration

Here’s an example of BookstoreSettings in the ~/.jupyter/jupyter_notebook_config.py file:

"""jupyter notebook configuration
The location for user installs on MacOS is ``~/.jupyter/jupyter_notebook_config.py``.
See https://jupyter.readthedocs.io/en/latest/projects/jupyter-directories.html for additional locations.
"""
from bookstore import BookstoreContentsArchiver

c.NotebookApp.contents_manager_class = BookstoreContentsArchiver

c.BookstoreSettings.workspace_prefix = "/workspace/kylek/notebooks"
c.BookstoreSettings.published_prefix = "/published/kylek/notebooks"

c.BookstoreSettings.s3_bucket = "<bucket-name>"

If bookstore uses an EC2 instance with a valid IAM role, there is no need to specify here
c.BookstoreSettings.s3_access_key_id = <AWS Access Key ID / IAM Access Key ID>
c.BookstoreSettings.s3_secret_access_key = <AWS Secret Access Key / IAM Secret Access Key>

The root directory of bookstore’s GitHub repo contains an example config
called jupyter_config.py.example that shows how to configure
BookstoreSettings.

Usage

Data scientists and notebook users may develop locally on their system or save
their notebooks to off-site or cloud storage. Additionally, they will often
create a notebook and then over time make changes and update it. As they work,
it’s helpful to be able to store versions of a notebook. When making changes
to the content and calculations over time, a data scientist using Bookstore can
now request different versions from the remote storage, such as S3, and
clone the notebook to their local system.

Note

store and clone

store

User saves to Local System ——————> Remote Data Store (i.e. S3)

clone

User requests a notebook to use locally <————– Remote Data Store (i.e. S3)

After some time working with a notebook, the data scientist may want to save or
share a polished notebook version with others. By publishing a notebook, the
data scientist can display and share work that others can use at a later time.

How to store and clone versions

Bookstore uses automatic notebook version management and specific storage paths
when storing a notebook.

Automatic notebook version management

Every save of a notebook creates an immutable copy of the notebook on object
storage. Initially, Bookstore supports S3 for object storage.

To simplify implementation and management of versions, we currently rely on S3
as the object store using versioned buckets [https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html]. When a
notebook is saved, it overwrites the existing file in place using the versioned
s3 buckets to handle the versioning.

Storage paths

All notebooks are archived to a single versioned S3 bucket using specific
prefixes to denote a user’s workspace and an organization’s publication of a
user’s notebook. This captures the lifecycle of the notebook on storage. To do
this, bookstore allows users to set workspace and published storage paths. For
example:

	/workspace - where users edit and store notebooks

	/published - notebooks to be shared to an organization

Bookstore archives notebook versions by keeping the path intact (until a user
changes them). For example, the prefixes that could be associated with storage
types:

	Notebook in “draft” form: /workspace/kylek/notebooks/mine.ipynb

	Most recent published copy of a notebook: /published/kylek/notebooks/mine.ipynb

Note

Scheduling (Planned for a future release)

When scheduling execution of notebooks, each notebook path is a namespace
that an external service can access. This helps when working with
parameterized notebooks, such as with Papermill. Scheduled notebooks may
also be referred to by the notebook key. In addition, Bookstore can
find version IDs as well.

Easing the transition to Bookstore’s storage plan

Since many people use a regular filesystem, we’ll start with writing to the
/workspace prefix as Archival Storage (more specifically, writing on save
using a post_save_hook for the Jupyter contents manager).

How to publish a notebook

To publish a notebook, Bookstore uses a publishing endpoint which is a
serverextension to the classic Jupyter server. If you wish to publish
notebooks, explicitly enable bookstore as a server extension to use the
endpoint. By default, publishing is not enabled.

To enable the extension globally, run:

jupyter serverextension enable --py bookstore

If you wish to enable it only for your current environment, run:

jupyter serverextension enable --py bookstore --sys-prefix

REST API

	
GET /api/bookstore

	Info about bookstore

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully requested

	
GET /api/bookstore/cloned

	Landing page for initiating cloning.

This serves a simple html page that allows avoiding xsrf issues on a jupyter server.

	Query Parameters

	
	s3_bucket (string) – S3_bucket being targeted

	s3_key (string) – S3 object key being requested

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successful operation

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Must have a key to clone from

	
POST /api/bookstore/cloned

	Trigger clone from s3

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully cloned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Must have a key to clone from

	
PUT /api/bookstore/published/{path}

	Publish a notebook to s3

	Parameters

	
	path (string) – Path to publish to, it will be prefixed by the preconfigured published bucket.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully published.

Reference

	Configuration
	bookstore.bookstore_config

	Archiving
	bookstore.archive

	bookstore.handlers module

	bookstore.s3_paths module

	Clone
	bookstore.clone

	Notebook Client
	bookstore.client.nb_client

	Bookstore Client
	bookstore.client.store_client

Configuration

Bookstore may be configured by providing BookstoreSettings in the
~/.jupyter/jupyter_notebook_config.py file.

bookstore.bookstore_config

Configuration settings for bookstore.

	
class bookstore.bookstore_config.BookstoreSettings(**kwargs)

	Configuration for archival and publishing.

Settings include storage directory locations, S3 authentication,
additional S3 settings, and Bookstore resources.

S3 authentication settings can be set, or they can be left unset when
IAM is used.

Like the Jupyter notebook, bookstore uses traitlets to handle
configuration, loading from files or CLI.

	
workspace_prefix

	Directory to use for user workspace storage

	Type

	str(workspace)

	
published_prefix

	Directory to use for published notebook storage

	Type

	str(published)

	
s3_access_key_id

	Environment variable JPYNB_S3_ACCESS_KEY_ID

	Type

	str, optional

	
s3_secret_access_key

	Environment variable JPYNB_S3_SECRET_ACCESS_KEY

	Type

	str, optional

	
s3_endpoint_url

	Environment variable JPYNB_S3_ENDPOINT_URL

	Type

	str("https://s3.amazonaws.com")

	
s3_region_name

	Environment variable JPYNB_S3_REGION_NAME

	Type

	str("us-east-1")

	
s3_bucket

	Bucket name, environment variable JPYNB_S3_BUCKET

	Type

	str("")

	
max_threads

	Maximum threads from the threadpool available for S3 read/writes

	Type

	int(16)

	
bookstore.bookstore_config.validate_bookstore(settings: bookstore.bookstore_config.BookstoreSettings)

	Check that settings exist.

	Parameters

	settings (bookstore.bookstore_config.BookstoreSettings) – Instantiated settings object to be validated.

	Returns

	validation_checks – Existence of settings by category (general, archive, publish)

	Return type

	dict

Archiving

bookstore.archive

Archival of notebooks

	
class bookstore.archive.ArchiveRecord

	Bases: tuple

Represents an archival record.

An ArchiveRecord uses a Typed version of collections.namedtuple(). The
record is immutable.

Example

An archive record (filepath, content, queued_time) contains:

	a filepath to the record

	the content for archival

	the queued time length of time waiting in the queue for archiving

	
content

	Alias for field number 1

	
filepath

	Alias for field number 0

	
queued_time

	Alias for field number 2

	
class bookstore.archive.BookstoreContentsArchiver(*args, **kwargs)

	Bases: notebook.services.contents.filemanager.FileContentsManager

Manages archival of notebooks to storage (S3) when notebook save occurs.

This class is a custom Jupyter
FileContentsManager [https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html#contents-api]
which holds information on storage location, path to it, and file to be
written.

Example

	Bookstore settings combine with the parent Jupyter application settings.

	A session is created for the current event loop.

	To write to a particular path on S3, acquire a lock.

	After acquiring the lock, archive method authenticates using the storage
service’s credentials.

	If allowed, the notebook is queued to be written to storage (i.e. S3).

	
path_locks

	Dictionary of paths to storage and the lock associated with a path.

	Type

	dict

	
path_lock_ready

	A mutex lock associated with a path.

	Type

	asyncio mutex lock

	
archive(record: bookstore.archive.ArchiveRecord)

	Process a record to write to storage.

Acquire a path lock before archive. Writing to storage will only be
allowed to a path if a valid path_lock is held and the path is not
locked by another process.

	Parameters

	record (ArchiveRecord) – A notebook and where it should be written to storage

	
run_pre_save_hook(model, path, **kwargs)

	Send request to store notebook to S3.

This hook offloads the storage request to the event loop.
When the event loop is available for execution of the request, the
storage of the notebook will be done and the write to storage occurs.

	Parameters

	
	model (str) – The type of file

	path (str) – The storage location

bookstore.handlers module

Handlers for Bookstore API

	
class bookstore.handlers.BookstoreVersionHandler(application: tornado.web.Application, request: tornado.httputil.HTTPServerRequest, **kwargs)

	Bases: notebook.base.handlers.APIHandler

Handler responsible for Bookstore version information

Used to lay foundations for the bookstore package. Though, frontends can use this endpoint for feature detection.

	
get()

	

	
bookstore.handlers.load_jupyter_server_extension(nb_app)

	

bookstore.s3_paths module

S3 path utilities

	
bookstore.s3_paths.s3_display_path(bucket, prefix, path='')

	Create a display name for use in logs

	Parameters

	
	bucket (str) – S3 bucket name

	prefix (str) – prefix for workspace or publish

	path (str) – The storage location

	
bookstore.s3_paths.s3_key(prefix, path='')

	Compute the s3 key

	Parameters

	
	prefix (str) – prefix for workspace or publish

	path (str) – The storage location

	
bookstore.s3_paths.s3_path(bucket, prefix, path='')

	Compute the s3 path.

	Parameters

	
	bucket (str) – S3 bucket name

	prefix (str) – prefix for workspace or publish

	path (str) – The storage location

Clone

bookstore.clone

Handler to clone notebook from storage.

	
class bookstore.clone.BookstoreCloneHandler(application: tornado.web.Application, request: tornado.httputil.HTTPServerRequest, **kwargs)

	Handle notebook clone from storage.

Provides API handling for GET and POST when cloning a notebook
from storage (S3). Launches a user interface cloning options page when
GET is sent.

	
initialize(self)

	Helper to access bookstore settings.

	
get(self)

	Checks for valid storage settings and render a UI for clone options.

	
construct_template_params(self, s3_bucket, s3_object_key)

	Helper to populate Jinja template for cloning option page.

	
post(self)

	Clone a notebook from the location specified by the payload.

	
get_template(self, name)

	Loads a Jinja template and its related settings.

See also

Jupyter Notebook reference on Custom Handlers [https://jupyter-notebook.readthedocs.io/en/stable/extending/handlers.html#registering-custom-handlers]

	
construct_template_params(s3_bucket, s3_object_key)

	Helper that takes valid S3 parameters and populates UI template

	
get()

	GET /api/bookstore/cloned

Renders an options page that will allow you to clone a notebook
from a specific bucket.

	
get_template(name)

	Loads a Jinja template by name.

	
initialize()

	Helper to retrieve bookstore setting for the session.

	
post()

	POST /api/bookstore/cloned

Clone a notebook to the path specified in the payload.

The payload type for the request should be:

{
"s3_bucket": string,
"s3_key": string,
"target_path"?: string
}

The response payload should match the standard Jupyter contents
API POST response.

Notebook Client

bookstore.client.nb_client

Bookstore Client

bookstore.client.store_client

Project

	Contributing

	Contributor Code of Conduct

	Local Continuous Integration

	Running Python Tests

	Releasing

Contributing

Oh, hello there! You’re probably reading this because you are interested in
contributing to nteract. That’s great to hear! This document will help you
through your journey of open source. Love it, cherish it, take it out to
dinner, but most importantly: read it thoroughly!

What do I need to know to help?

Read the README.md file. This will help you set up the project. If you have
questions, please ask on the nteract Slack channel. We’re a welcoming project and
are happy to answer your questions.

How do I make a contribution?

Never made an open source contribution before? Wondering how contributions work
in the nteract world? Here’s a quick rundown!

	Find an issue that you are interested in addressing or a feature that you
would like to address.

	Fork the repository associated with the issue to your local GitHub
organization.

	Clone the repository to your local machine using:

git clone https://github.com/github-username/repository-name.git

	Create a new branch for your fix using:

git checkout -b branch-name-here

	Make the appropriate changes for the issue you are trying to address or the
feature that you want to add.

	You can run python unit tests using pytest. Running integration tests
locally requires a more complicated setup. This setup is described in
running_ci_locally.md

#. Add and commit the changed files using git add and git commit.
#.

Push the changes to the remote repository using:

git push origin branch-name-here

	Submit a pull request to the upstream repository.

	Title the pull request per the requirements outlined in the section below.

	Set the description of the pull request with a brief description of what you
did and any questions you might have about what you did.

	Wait for the pull request to be reviewed by a maintainer.

	Make changes to the pull request if the reviewing maintainer recommends
them.

	Celebrate your success after your pull request is merged! :tada:

How should I write my commit messages and PR titles?

Good commit messages serve at least three important purposes:

	To speed up the reviewing process.

	To help us write a good release note.

	To help the future maintainers of nteract/nteract (it could be you!), say
five years into the future, to find out why a particular change was made to
the code or why a specific feature was added.

Structure your commit message like this:

> Short (50 chars or less) summary of changes
>
> More detailed explanatory text, if necessary. Wrap it to about 72
> characters or so. In some contexts, the first line is treated as the
> subject of an email and the rest of the text as the body. The blank
> line separating the summary from the body is critical (unless you omit
> the body entirely); tools like rebase can get confused if you run the
> two together.
>
> Further paragraphs come after blank lines.
>
> - Bullet points are okay, too
>
> - Typically a hyphen or asterisk is used for the bullet, preceded by a
> single space, with blank lines in between, but conventions vary here
>

Source: https://git-scm.com/book/ch5-2.html

DO

	Write the summary line and description of what you have done in the
imperative mode, that is as if you were commanding. Start the line
with “Fix”, “Add”, “Change” instead of “Fixed”, “Added”, “Changed”.

	Always leave the second line blank.

	Line break the commit message (to make the commit message readable
without having to scroll horizontally in gitk).

DON’T

	Don’t end the summary line with a period - it’s a title and titles don’t end
with a period.

Tips

	If it seems difficult to summarize what your commit does, it may be because it
includes several logical changes or bug fixes, and are better split up into
several commits using git add -p.

References

The following blog post has a nice discussion of commit messages:

	“On commit messages” http://who-t.blogspot.com/2009/12/on-commit-messages.html

How fast will my PR be merged?

Your pull request will be merged as soon as there are maintainers to review it
and after tests have passed. You might have to make some changes before your
PR is merged but as long as you adhere to the steps above and try your best,
you should have no problem getting your PR merged.

That’s it! You’re good to go!

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project maintainer at [rgbkrk@gmail.com]. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. Maintainers are obligated to maintain confidentiality with regard to the reporter of an incident.

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available from http://contributor-covenant.org/version/1/4/

Local Continuous Integration

It helps when developing to be able to run integration tests locally. Since
bookstore relies on accessing S3, this requires that we create a local server
that can model how S3 works.

We will be using minio [https://docs.minio.io/] to mock S3 behavior.

Setup Local CI environment

To run the ci tests locally, you will need to have a few things set up:

	a functioning docker service

	define /mnt/data/ and /mnt/config/ and give full permissions
(e.g., chmod 777 /mnt/data).
= add /mnt/data and /mnt/config to be accessible from docker. You can do
so by modifying Docker’s preferences by going to Docker → Preferences → File Sharing
and adding /mnt/data and /mnt/config to the list there.

	an up-to-date version of node.

Run Local tests

	Open two terminals with the current working directory as the root bookstore
directory.

	In one terminal run yarn test:server. This will start up minio.

	In the other terminal run yarn test. This will run the integration tests.

Interactive python tests

The CI scripts are designed to be self-contained and run in an automated setup. This makes it
makes it harder to iterate rapidly when you don’t want to test the entire system but when
you do need to integrate with a Jupyter server.

In addition the CI scripts, we have included ./ci/clone_request.py for testing the clone
endpoint. This is particularly useful for the /api/bookstore/cloned endpoint because while it
is an API to be used by other applications, it also acts as a user facing endpoint since it
provides a landing page for confirming whether or not a clone is to be approved.

It’s often difficult to judge whether what is being served makes sense from a UI perspective
without being able to investigate it directly. At the same time we’ll need to access it as an
API to ensure that the responses are well-behaved from an API standpoint. By using python to
query a live server and a browser to visit the landing page, we can rapidly iterate between
the API and UI contexts from the same live server’s endpoint.

We provide examples of jupyter notebook commands needed in that file as well for both
accessing the nteract-notebooks S3 bucket as well as the Minio provided bookstore bucket
(as used by the CI scripts).

Running Python Tests

The project uses pytest to run Python tests and tox as a tool for running
tests in different environments.

Setup Local development system

Using Python 3.6+, install the dev requirements:

pip install -r requirements-dev.txt

Run Python tests

Important: We recommend using tox for running tests locally.
Please deactivate any conda environments before running
tests using tox. Failure to do so may corrupt your virtual environments.

To run tests for a particular Python version (3.6 or 3.7):

tox -e py36 # or py37

This will run the tests and display coverage information.

Run linters

tox -e flake8
tox -e black

Run type checking

tox -e mypy

Run All Tests and Checks

tox

Releasing

Pre-release

	[] First check that the CHANGELOG is up to date for the next release version.

	[] Update docs

Installing twine package

Install and upgrade, if needed,twine with python3 -m pip install -U twine.
The long description of the package will not render on PyPI unless an up-to-date
version is used.

Create the release

	[] Update version number bookstore/_version.py

	[] Commit the updated version

	[] Clean the repo of all non-tracked files: git clean -xdfi

	[] Commit and tag the release

git commit -am"release $VERSION"
git tag $VERSION

	[] Push the tags and remove any existing dist directory files

git push && git push --tags
rm -rf dist/*

	[] Build sdist and wheel

python setup.py sdist
python setup.py bdist_wheel

Test and upload release to PyPI

	[] Test the wheel and sdist locally

	[] Upload to PyPI using twine over SSL

twine upload dist/*

	[] If all went well:

	Change bookstore/_version.py back to .dev

	Push directly to master and push --tags too.

Change Log

2.3.0 Unreleased [https://github.com/nteract/bookstore/compare/2.2.1...HEAD]

2.3.0 on Github [https://github.com/nteract/bookstore/releases/tag/2.3.0]

Significant changes

Validation information is now exposed as a dict at the /api/bookstore endpoint.

This allows us to distinguish whether different features have been enabled on bookstore.

The structure for 2.3.0 is:

validation_checks = {
 "bookstore_valid": all(general_settings),
 "archive_valid": all(archive_settings),
 "publish_valid": all(published_settings),
}

Releases prior to 2.3.0

2.2.1 (2019-02-03) [https://github.com/nteract/bookstore/releases/tag/2.2.1]

2.2.0 (2019-01-29) [https://github.com/nteract/bookstore/releases/tag/2.2.0]

2.1.0 (2018-11-20) [https://github.com/nteract/bookstore/releases/tag/2.1.0]

2.0.0 (2018-11-13) [https://github.com/nteract/bookstore/releases/tag/2.0.0]

0.1 (2018=10-16) [https://github.com/nteract/bookstore/releases/tag/0.1]

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/bookstore	
 Info about bookstore

 	
 	
 GET /api/bookstore/cloned	
 Landing page for initiating cloning.

 	
 	
 POST /api/bookstore/cloned	
 Trigger clone from s3

 	
 	
 PUT /api/bookstore/published/{path}	
 Publish a notebook to s3

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bookstore	

 	
 	
 bookstore.archive	

 	
 	
 bookstore.bookstore_config	

 	
 	
 bookstore.clone	

 	
 	
 bookstore.handlers	

 	
 	
 bookstore.s3_paths	

Index

 A
 | B
 | C
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | V
 | W

A

 	
 	archive() (bookstore.archive.BookstoreContentsArchiver method)

 	
 	ArchiveRecord (class in bookstore.archive)

B

 	
 	bookstore.archive (module)

 	bookstore.bookstore_config (module)

 	bookstore.clone (module)

 	bookstore.handlers (module)

 	
 	bookstore.s3_paths (module)

 	BookstoreCloneHandler (class in bookstore.clone)

 	BookstoreContentsArchiver (class in bookstore.archive)

 	BookstoreSettings (class in bookstore.bookstore_config)

 	BookstoreVersionHandler (class in bookstore.handlers)

C

 	
 	construct_template_params() (bookstore.clone.BookstoreCloneHandler method), [1]

 	
 	content (bookstore.archive.ArchiveRecord attribute)

F

 	
 	filepath (bookstore.archive.ArchiveRecord attribute)

G

 	
 	get() (bookstore.clone.BookstoreCloneHandler method), [1]

 	(bookstore.handlers.BookstoreVersionHandler method)

 	
 	get_template() (bookstore.clone.BookstoreCloneHandler method), [1]

I

 	
 	initialize() (bookstore.clone.BookstoreCloneHandler method), [1]

L

 	
 	load_jupyter_server_extension() (in module bookstore.handlers)

M

 	
 	max_threads (bookstore.bookstore_config.BookstoreSettings attribute)

P

 	
 	path_lock_ready (bookstore.archive.BookstoreContentsArchiver attribute)

 	path_locks (bookstore.archive.BookstoreContentsArchiver attribute)

 	
 	post() (bookstore.clone.BookstoreCloneHandler method), [1]

 	published_prefix (bookstore.bookstore_config.BookstoreSettings attribute)

Q

 	
 	queued_time (bookstore.archive.ArchiveRecord attribute)

R

 	
 	run_pre_save_hook() (bookstore.archive.BookstoreContentsArchiver method)

S

 	
 	s3_access_key_id (bookstore.bookstore_config.BookstoreSettings attribute)

 	s3_bucket (bookstore.bookstore_config.BookstoreSettings attribute)

 	s3_display_path() (in module bookstore.s3_paths)

 	s3_endpoint_url (bookstore.bookstore_config.BookstoreSettings attribute)

 	
 	s3_key() (in module bookstore.s3_paths)

 	s3_path() (in module bookstore.s3_paths)

 	s3_region_name (bookstore.bookstore_config.BookstoreSettings attribute)

 	s3_secret_access_key (bookstore.bookstore_config.BookstoreSettings attribute)

V

 	
 	validate_bookstore() (in module bookstore.bookstore_config)

W

 	
 	workspace_prefix (bookstore.bookstore_config.BookstoreSettings attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/nteract_logo_compact_purple.png
Nnteract

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 bookstore

 		
 Installation

 		
 Install from PyPI (recommended)

 		
 Install from Source

 		
 Configuration

 		
 Example configuration

 		
 Usage

 		
 How to store and clone versions

 		
 Automatic notebook version management

 		
 Storage paths

 		
 Easing the transition to Bookstore’s storage plan

 		
 How to publish a notebook

 		
 REST API

 		
 Reference

 		
 Configuration

 		
 bookstore.bookstore_config

 		
 Archiving

 		
 bookstore.archive

 		
 bookstore.handlers module

 		
 bookstore.s3_paths module

 		
 Clone

 		
 bookstore.clone

 		
 Notebook Client

 		
 bookstore.client.nb_client

 		
 Bookstore Client

 		
 bookstore.client.store_client

 		
 Project

 		
 Contributing

 		
 What do I need to know to help?

 		
 How do I make a contribution?

 		
 How should I write my commit messages and PR titles?

 		
 How fast will my PR be merged?

 		
 Contributor Code of Conduct

 		
 Local Continuous Integration

 		
 Setup Local CI environment

 		
 Run Local tests

 		
 Interactive python tests

 		
 Running Python Tests

 		
 Setup Local development system

 		
 Run Python tests

 		
 Run linters

 		
 Run type checking

 		
 Run All Tests and Checks

 		
 Releasing

 		
 Pre-release

 		
 Installing twine package

 		
 Create the release

 		
 Test and upload release to PyPI

 		
 Change Log

 		
 2.3.0 Unreleased

 		
 Significant changes

 		
 Releases prior to 2.3.0

_static/up.png

_static/images/nteract_logo_app_icon_purple.png

_static/up-pressed.png

_static/images/nteract_logo_compact_purple.png
Nnteract

